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A modification of the computational technique for calculating bubble and dew points using 
an equation of state has been proposed. The procedure consists in the Double Application of the 
Newton-Raphson method (DAN) to the set of equilibrium conditions. The algorithm is very 
effective as it provides both values of equilibrium variables and a very qualified first estimate ofthe 
next equilibrium point. This enables to proceed along the phase envelope rather quickly and to 
achieve convergence within a few iterations except in the close vicinity of the critical point. 

Calculation of vapour-liquid equilibria (VLE) using an equation of state is very 
effective as it uses the same thermodynamic model for both fluid phases. At elevated 
pressures and especially in the vicinity of the critical point this method provides 
practically the only possibility to determine the equilibrium quantities. 

Several methods are employed to calculate VLE by an equation of state1 - S• 

The already existing methods may be divided into two groups. The procedures which 
require only the evaluation of the fugacity of components belong to the first group 
and are represented for example by the method developed by Prausnitz and Chueh1• 

The second group comprises the methods which, except for the component fugacity, 
require also the derivatives of fugacity with respect to composition, temperature and 
pressure. The very elaborate procedure suggested by Michelsen5 belongs to the latter 
group. 

The formal simplicity is the greatest advantage of the first group methods. This is, 
however, compensated by the higher number of iterations required to obtain con­
vergence of the problem. In some cases, the number of iterations may be as high as 
several hundred. Very frequently these methods fail in the vicinity of the critical 
point. In addition, the pressure is often considered to be an independent variable. 
Then it is necessary to decide whether the density determined for the specified tem­
perature, pressure and estimated composition belongs to the liquid or to the vapour 
phases6 - s. 
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The method suggested in this work is a modification of the previously developed 
procedure9 • It adopts the Newton-Raphson method for calculating VLE and thus 
belongs to the second group. Methods similar to that described here have been 
published lately by Asselineau and coworkers1o and by Michelsens. Contrary to the 
above-mentioned papers, this work presents separately methods for calculating 
bubble and dew points (this paper) and flash calculation procedures (the second 
paper). Sets of equations for different special cases are explicitely given. In the present 
approach density rather than pressure is considered as independent variable. Most 
of the problems in finding densities of equilibrium phases are thus avoided. 

This paper is devoted to the bubble point temperature and the dew point tempera­
ture and to the bubble point pressure and the dew point pressure calculations. Flash 
calculations are dealt with in the second paper. In these cases a composition of equi­
librium phases for a given overall composition is usually sought. In addition, two 
more quantities, for example temperature and pressure, must also be specified. 

The application of the Newton-Raphson method to the set of Eqs (1) is per­
formed in two consecutive steps. First, to solve the equilibrium conditions to obtain 
the equilibrium quantities. Second, to determine the first estimate of the next equi­
librium point. The method is thus called the DAN method to denote the Double 
Application of the Newton-Raphson method. The Newton-Raphson method re­
quires that partial derivatives of pressure and fugacity with respect to temperature, 
density and composition are available. These derivatives can easily be evaluated 
using the dimensionless quantities11 given in Appendix B. 

THEORETICAL 

Calculation of vapour-liquid eqUilibria by an equation of state is based on solving 
the following set of equilibrium conditions 

p = pv = p(T, dV , y) , 

p = pL = p(T, dL , x), 

Ii = I~ = li(T, dV , y) = If = li(T, dL , x) , i = 1 ,2, ... , N , (1) 

where p denotes the pressure, T is the temperature, Ii is the fugacity of the i-th 
component and d is the saturated density. The superscripts L and V indicate the 
liquid and vapour phases, respectively. x and yare vectors of N - 1 independent 
mole fractions in the liquid and the vapour phases, respectively [x = (Xl' X2' ••• , 

... , XN-I), y = (Ylo Y2, ... , YN-l)]. In the N-component system this set of non-linear 
equations gives N + 2 conditions for 2(N + 1) variables T, p, dV , dL, X, y. There­
fore, N variables must be specified before the remaining N + 2 unknown ones are 
calculated by solving the set of Eqs (1). 
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Computation of VLE in the one-component system (N = 1) is the simplest case 
of solving the set of Eqs (1). From the equality of pressure and fugacities the boiling 
point temperature or the saturation pressure is found for a given pressure or tempera­
ture. In multicomponent mixtures the set of Eqs (1) is usually solved for a given 
composition of the liquid (bubble point) or the vapour (dew point) phases. In addi­
tion, the system pressure or temperature must also be specified. 

By expanding pressure and fugacities of components in a Taylor series and cancel­
ling all but linear terms the set of Eqs (1) can be modified into the following form: 

N-l 

P = p~ + (opjoT)~ AT + (opjod)~ AdL + L (opjoxJ)~ AXj . 
j=1 

N-l 

+ I (opjoYJX AYj , 
j=1 

N-l 

+ I (ofdoYj)X AYj = 
j=1 

N-l 

+ L (ofdOXj)~ AXj' i = 1,2, ... , N . (2) 
j = 1 

Here the subscript 0 denotes the quantity which corresponds to values of variables 
T, dV , dL , X, y. The subscript 0 is in subsequent text omitted. 

A detailed description on the application of the suggested procedure to the ca 1_ 

culation of the bubble point pressure is presented below. The other problems, i.e. 
the calculation of the dew point pressure and the calculation of the bubble point 
temperature and dew point temperature are presented only briefly. 

Calculation of Bubble Point Pressure for Specified T and x 

The set of Eqs (2) can be rearranged in this case as follows: 

N-I 

(opjod)V Adv + I (opjoYJ)V AYJ - (Opjod)L AdL = 
j=1 

N-I 

+ I (opjoXJ)L AXj , 
j=1 
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N-I 

(aji/adt Adv + L (afdaYjt AYj - (aj;/ad)L AdL = 
j= I 

= (Ji)t - (J;),i; + [(aj;/aT)L -(aj;/aTt] AT + 
N-I 

+ L (afdoxj)L AXj' i = 1,2, ... , N . (3) 
j= I 

As the system pressure is not specified in this case, the first two equation of set (2) 
are joined into one equation. 

Scheme 1 shows the flow diagram of the computational procedure which includes 
the following steps: 

1) At the beginning a first estimate of the vapour and of the liquid phase densities 
elv and dL and of the vapour phase composition Y must be supplied. This can be 
achieved by using, for example, Raoult's and Amagat's laws. Details are given 
in Appendix A. 

2) Coefficients of the set of Eqs (3) are evaluated using valm:s of elv, dL and y 

determined in the preceding step. The incrEments AT and Ax are equal to zero. 
By solving the set of Eqs (3) the increments Adv, AdL, Ay are obtained. 

3) Quantity S is calculated by 

N-I 

S = (Adv/d~J2 + (AdLld~c)2 + L (AYj)2 , (4) 
j=1 

where d~c and d~c are pseudocritical densities of the phases given by 

N N 

d~c = L xi(dc)i' d~c = L Yi(dc)i . (5) 
i= I i = 1 

According to the size of S three different cases may occur: 

3.1) If S is less than Bo, a computation of the bubble point pressure is finished. 
Here Bo is the chosen convergence tolerance. A value of Bo of 10- 7 gives solutions 
that in single precision do not change significantly upon further reduction of Bo· 

3.2) If S exceeds a maximum step Bl ~ 0·1 permitted in one iteration, values 
of calculated increments are reduced by 

(6) 

where Ij; stands for dV, dL and y. This step-limiting often avoids a divergence of itera­
tions. A value of Bl of 0·1 is recommended. After reduction the calculation proceeds 
to step 3.3. 
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3.3) If the relation 60 < S ~ 6 1 is fulfilled new values of variables are calculated 

t/! i + 1 = t/! i + At/! , (7) 

where t/! is dV , dL and y. The calculation then continues to step 2. 

4) If it is desired to proceed along the equilibrium curve, the solution for the given 
T, x, i.e. the values of dV , dL and yare utilized to obtain the first estimate of the next 
point characterized by Tu and xu. Differences between temperatures and composi­
tions yield the increments AT = Til - T and Ax = XII - x. Using these increments 
the right-hand sides of the set of Eqs (3) are evaluated. The coefficients on the left­
-hand side are known from the last iteration step of the preceding point. 

5) The solution of Eqs (3) with the coefficients of the matrix obtained in step 4 
gives new values of increments Adv, AdL and Ay. Thus, a new value of S is deter­
mined. According to its size, two cases are considered: 

5.1) If S is less or equal to a maximum allowed step along the equilibrium curve 
6 2 ~ O·t, values of t/!II given by 

t/!II = t/! + At/! (8) 

(t/! = dV , dL, y) are used for the calculation of the equilibrium point specified by Til 
and XII' The calculation now returns to step 2. 

5.2) If S is greater than 62' the next equilibrium point is too far from the preceding 
one. Then it is desirable to insert an intermediate step thus ensuring the calculation 
not to fail. In this case the intermediate point is calculated with parameters 

(9) 

where t/! stands for T, dV , dL, x, y. Here the calculation is also returned to step 2. 

Calculation of Dew Point Pressure at Specified T and y 

It can easily be seen that in this case the set of equilibrium conditions differs from 
set (3) by designation of phases only. Therefore, for the determination of the dew 
point pressure, the procedure for calculating the bubble point pressure described 
above may be employed by interchanging densities and compositions of both phases 
in Eqs (3). The only difference is in determining the first approximation. Details 
are given in Appendix A. 
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Calculation of Bubble Point Temperature at Specified p and x 

The set of Eqs (2) can be modified in this case into the form 

- [opjo(1jT)JL t,.(1jT) - (Opjod)L t,.dL = p~ - p + 
N-l 

+ L (opjoXj)L t,.Xj , 
j=1 

N-I 

[opjo(1jT)Jv t,.(1jT) + (opjod)V t,.dv + L (opjoYj)V t,.Yj = 
j=l 

= p - pX, 

N-l 

+ L (ofJoYj)Y t,.Yj - (Ofijod)L t,.dL = 
j=l 

N-l 

= UJ~ - UJX + L (ofJOXj)L t,.x j , i = 1,2, ... , N , 
j= 1 

where 

7 

(lO) 

(11) 

To enhance convergence it is more convenient to consider the dependence of pres­
sure and fugacities on the reciprocal temperature rather than on temperature. The 
order of the magnitude of the increments for unknowns t,.T, t,.dL, t,.dv and t,.YJ 
(j = 1, 2, ... , N - 1) is thus brought much closer. 

The computational procedure is similar to that designed for calculating the bubble 
point pressure. Quantity S is now defined by 

N-l 

S = (t,.TjTpc)2 + (t,.dV jd:c)2 + (t,.dLjd;c)2 + L (t,.Yj)2 , (12) 

where Tpc is the pseudocritical temperature given by 

N 

Tpc = L XiT.:i . 
i = 1 

j=l 

(l3) 

The procedure then proceeds in the same manner as described for calculating the 
bubble point pressure. 

SCHEME 1 

Flow diagram for bubble point pressure calculation (figures above boxes indicate the steps as de­
scribed in text) 
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The procedure developed for calculating the bubble point temperature can also be 
applied for computing the dew point temperature after interchanging the densities 
and compositions of phases. 

DISCUSSION 

Calculation of the phase envelope by the procedure suggested in this work is very 
effective. This effectiveness is due to a qualified first estimate obtained on the basis 
of calculation of the preceding equilibrium point. In spite of this fact it may happen 
that the computation fails. Let us omit the failure due to a bad first estimate obtained 
on the basis of Raoult's and Amagat's laws. When the computation starts from a real 
equilibrium point, the reasons which may lead to failure of the calculation are 
as follows: a) the value of 112 is too high; b) a wrong alternative of the computation 
of phase envelope is chosen ; c) the thermodynamic instability in the two phase region. 
Too high value of 1l2' A value of 112 of 0·1 is n:commended. If the temperature is con­
siderably lower than the critical temperatures of all components a higher value 
of 112 may be used. In the critical region it is necessary to choose 112 < 0'1, especially 
if it is desired to approach a vicinity of the critical point. 

Wrong alternative. It is always possible to find a solution for a given problem, 
if the temperature is lower than the critical temperatures of all components. In some 
cases, however, such solutions may not exist or multiple solutions may occur. 

Let us suppose that in a binary system depicted in Fig. 1 quantities corresponding 
to point A (i.e. T, PA> Yt> dV ) and to point A' (i.e. T, PA> Xl' dL) are known. Let us 
further assume that it is desired to calculate the equilibrium points Band B' at an equal 

p 
Jr---------UD 

o----------------oR 

B, 

(y, )e x"y, 

FIG. 1 

Phase envelope including the retrograde 
region in a binary system 
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temperature, at the liquid and vapour phase compositions (X1)B' and (Yl)B' If the 
equilibrium curve is approximated by a straight line, points BJ and B; are used as 
a first estimate. Starting from point A the increment in the composition of the vapour 
phase must not exceed the value (.1Yl)R' This means that it is not possible to find 
a dew point for a composition Yl > (Yt)R owing to the fact that for this composi­
tion the solution of the set of Eqs (3) does not exist. 

Starting from equilibrium point A, only the part of the equilibrium curve which is 
restricted by points RR', i.e. the dew point curve given by M-A-B-E-R and the 
bubble point curve given by points M-A'-B'-E'-R', can be reached when the proce­
dure for calculation of the dew point pressure was applied. As a result of this proce­
dure, the total pressure and the liquid phase composition are obtained for the given 
temperature and the vapour phase composition. Thus both equilibrium points lying 
on the bubble and the dew point curve, e.g. E and E', are determined simultaneously. 
Starting from equilibrium point D, only the part of the equilibrium curve which is 
given by points R'-D'-C-D-R can be calculated using the dew point pressure 
procedure. This indicates that the dew point pressure procedure does not enable 
to construct the whole phase envelope. 

However, employing the bubble point pressure procedure we can proceed along 
the whole bubble point curve starting from equilibrium point A'. As this procedure 
yields also the vapour phase composition, the whole phase envelope may thus be 
constructed. 

It is worth mentioning here that the procedure suggested in this work cannot be 
used if the critical point is desired. Choosing sufficiently small increments in mole 
fractions when proceeding along the equilibrium curve, i.e. choosing a small value 
of 82 , it is possible to reach the close vicinity of the critical point. Therefore, the critical 
point can be found from the equilibrium curve calculation by extrapolation. 

Thermodynamic instability in the two phase region is illustrated on the example 
of calculation of the bubble point pressure in a binary system. All relations derived 
here can be extended to multicomponent systems, too. The same conclusions are 
also valid for the bubble point temperature, the dew point temperature and .the dew 
point pressure calculations. 

The determinant of the set of Eqs (3) is given by 

(iJp/iJd)Y 
Ds = (iJfl/iJd)V 

(iJ f2/ iJd)Y 

(iJp/iJY1)Y 
(iJfl/iJY1)Y 
(iJf2/ iJY1)Y 

-(Op/iJd)L 
-(Ofl/iJd)L 
-(iJf2/iJd)L 

To rearrange Eq. (14) the following relations are utilized 

2 

-(op/od)Y/(RT) + I Yi(ofdiJd)y dV/f~ = 0, 
i=l 
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2 

-(OP/oYjt/(RT) + L Yi(ofdoyY dV/fi = O. (16) 
i= 1 

For determinant (14) then follows 

D = fiJi ·1'.(0 In fl)V 
S h dV ad 

(17) 

o 
where 

2 

e = (Op(Od)L/(RT) - dV L Yi(ofdod)L/f~ . (19) 
i= 1 

Eq. (17) can be modified to obtain 

D = [ifi DVe 
S dV a , 

h 
(19) 

where 

v i (op/odt (OP/OYlt 

Da = I (a In fl/od)V (a In fl(OYlt . 
(20) 

We call D~ the determinant of stability in the vapour phase. It follows from the 
existing conditions of thermodynamic stability12-15 in the vapour phase that D~ 
must be positive in homogeneous and metastable regions. On the spinodal curve 
which represents the boundary between the metastable and the unstable region 
determinant D~ equals zero. The same is valid for the liquid phase. 

It is obvious that points lying on the spinodal curve cannot be utilized while solving 
the set of Eqs (3). Crossing the spinodal curve the sign of determinant D~ changes 
and so does the sign of determinant D. as the value of quantity e is positive. This 
causes the change of the sign of increments fldv, fldL and flYl' It may happen that 
after crossing the spinodal curve a trivial solution x = y, dL = dV is found. This 
difficulty may be overcome by checking the thermodynamic stability in both phases. 
The thermodynamic stability also guarantees that the equilibrium quantities, viz. 
compositions and densities will remain in proper phases in all iteration steps. 

The reasons that may lead to thermodynamic instability are as follows: 1) inac­
curate first estimate of equilibrium quantities especially of the liquid phase density; 
2) too high value of step 82 along the equilibrium curve especially in the presence 
of concave regions on the equilibrium curve; 3) the vicinity of the critical point; 
4) the originally two phase system consisting of the liquid and the vapour phases 
splits into two or more liquid phases at conditions specified. 
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Complete check of thermodynamic stability in both phases in all iteration steps 
would result in mainly multicomponent systems in a considerable increase of com­
puter time requirements. We have observed that in many cases it is sufficient to per­
form the complete check, which entails the calculation of determinants D: and D~, 
only at the end of the calculation when the convergence was achieved. 

To illustrate the application of the DAN method several examples are here pre­
sented. They include the construction of the phase envelope in binary two phase 
systems consisting of the liquid and the vapour phases. Multicomponent systems 
and systems which split into two liquid phases will be dealt with in a separate paper. 

The discussion is " devoted to the following cases: 1) retrograde region; 2) vicinity 
of the mixture critical point; 3) azeotropic mixtures. In all cases the Soave-Redlich­
_Kwong16 equation of state was adopted. A value of the convergence tolerance 
eo = 1.10-12 was employed and computations were performed in double precision. 

Two isotherms in the system methane-propane which include the retrograde region 
are shown in Fig. 2. In isothermal calculations with the step along the equilibrium 
curve IL1X11 = 0·05 the number of iterations was 4 in the whole concentration region 
except in the vicinity of the critical point. Changing the temperature from 275 K 
to 300 K required 5 iterations. 

In the system methane-propane and in similar systems with one of the components 
being at a supercritical temperature, some difficulties may arise in obtaining the 
first estimate of e6luilibrium quantities. Two possibilities are outlined which guarantee 
a qualified initial guess and thus lead to convergence of the iteration procedure. 
First, it is possible to start from a temperature below the critical temperature of all 
components in the mixture. Once the solution is found the temperature can be raised 

FIG. 2 

Phase envelopes in the system methane(l) + 
+ propane(2). Up to 4 iterations required 
to construct the equilibrium points 
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12 Novak, Ruzicka, Malijevsky, Matou~, Linek : 

stepwise gradually up to the desired value. Second, we can start at the given tempera­
ture from the mixture rich in a component that is at a subcritical temperature and 
which, in multicomponent systems, predominates. Saturated liquid and vapour 
phase densities of the pure component may be employed as a first estimate. These 
can be determined from Table I. 

The behaviour in the vicinity of the critical point of the mixture is shown in Fig. 3. 
In this case the algorithm was slightly modified. At the beginning of the calculation 
the increment in the composition is firmly chosen, e.g. dX I = 0·05. Approaching 
the vicinity of the critical point this step becomes too high. This may result in the 
substantial increase of the number of iterations or may lead to the failure of the 
calculation. As the number of iterations exceeds a chosen value, e.g. 10 or 15, the 
step along the equilibrium curve dX I is decreased five to ten times. Following the 
procedure repeatedly enables to approach a close proximity of the critical point. 

In Fig. 3 the critical region of the system carbon dioxide-propane is shown. The 
critical point is located by the bubble and the dew points. The difference in the liquid 
and the vapour phase mole fractions is 0'0008, densities in both phases differ by 0'5%. 
The number of iterations in the last step was 15. 

An example of an azeotropic mixture is given in Fig. 4. In the system ethane-carbon 
dioxide, the number of iterations did not increase even in a close proximity of the 

FIG. 3 

5·88r----,--------.------1-----,-----­
[,x, - 00002 

p 

MPa 

5·84 

~ l 
l 
l 

I 

,~ 
5·80L-.--:O::-·3::-:1~5----"-----.L-----'----:OO-C·3""3,-;}5 

X 11 Yl 

Critical region of the phase envelope in the system carbon dioxide(l) + propane(2) at tempera­
ture 350 K. Critical point location: Xl = 0·326400, Yl = 0'327206, dL = 5'2697.10- 3 mol/cm3 , 

d V = 5·2455. 1O- 3 mol/cm3 . Interaction parameters ka = 0'16, kb = 0'03 taken from Eveleine 
and Moore17 

Collection Czechoslovak Chern. Commun. [Vol. 50] [1985] , 



(
)
 

2- ii"
 

!l.
 o· ::J
 

(
)
 

N
 

II
) 

('
) :r
 

T
A

B
L

E
 I 

0 0>
 0'
 

S
at

ur
at

ed
 l

iq
ui

d 
an

d
 v

ap
ou

r 
ph

as
e 

de
ns

it
ie

s 
of

 p
ur

e 
co

m
po

ne
nt

s 
ca

lc
ul

at
ed

 b
y 

th
e 

S
oa

ve
-R

ed
li

ch
-K

w
on

g 
eq

ua
ti

on
 o

f 
st

at
e 

<
 

OJ
 ,.. (
)
 

w
=

O
 

w
=

 0
·2

0 
w

 =
 

0'
60

 
w

 =
 

1'
00

 
:r

 
II

) ? 
T

a r 
d

V
b

 
(
)
 

d
L 

p~
c 

dV
 

d
L 

p~
 

d
V

 
d

L 
p~

 
d

V
 

d
L 

0 
r 

r 
r 

r 
r 

r 
r 

r 
3 3.

 
c ? 

0'
90

 
0'

30
4 

1'
97

 
0·

54
5 

0·
26

1 
2'

07
 

0·
49

0 
0·

19
8 

2·
22

 
0'

39
9 

0·
15

6 
2-

33
 

'<
 

~
 

0·
85

 
0·

20
2 

2·
21

 
0'

38
3 

0'
16

2 
2'

32
 

0'
32

2 
0·

10
9 

2·
49

 
0·

23
1 

7-
62

E
-2

 
H

I
 

.§
 

0·
80

 
0·

13
4 

2·
40

 
0'

25
9 

9'
92

E
-2

 
2·

52
 

0·
20

1 
5'

73
E

-2
 

2-
70

 
0·

12
3 

3'
47

E
-2

 
2-

82
 

0·
75

 
8'

58
E

-2
a 

2·
57

 
0·

16
6 

5-
83

E
-2

 
2'

69
 

0·
11

7 
2'

81
E

-2
 

2-
87

 
5'

9E
-2

 
1-

42
E

-2
 

3'
00

 
m

 
.!:

!l 
0·

70
 

5'
27

E
-2

 
2·

72
 

0·
10

0 
3·

2l
E

-2
 

2-
84

 
6'

3E
-2

 
l'2

3E
-2

 
3·

02
 

2·
5E

-2
 

4'
92

E
-3

 
3·

14
 

0'
65

 
3'

04
E

-2
 

2·
85

 
5'

6E
-2

 
l'6

2E
-2

 
2·

97
 

3'
O

E
-2

 
4'

66
E

-3
 

3·
14

 
9'

O
E

-3
 

1'
37

E
-3

 
3·

25
 

0'
60

 
l'

6
lE

-2
 

2'
97

 
2-

8E
-2

 
7'

24
E

-2
 

3'
09

 
1'

3E
-2

 
l'4

3E
-3

 
3·

25
 

2·
6E

-3
 

2-
81

E
-4

 
3-

35
 

0·
55

 
7'

55
E

-3
 

3·
08

 
l'

2
E

-2
 

2'
73

E
-3

 
3'

19
 

4·
5E

-3
 

3'
33

E
-4

 
3-

34
 

5·
5E

-4
 

3'
87

E
-5

 
3-

44
 

0·
50

 
3'

O
lE

-3
 

3·
19

 
4'

5E
-3

 
8·

19
E

-4
 

3·
29

 
1·

2E
-3

 
5'

28
E

-5
 

3'
42

 
7-

9E
-5

 
3

'l
lE

-6
 

3'
51

 
0·

45
 

9'
53

E
-4

 
3·

28
 

1'
3E

-3
 

l'7
8E

-4
 

3-
37

 
2'

4E
-4

 
4'

95
E

-6
 

3·
50

 
6'

7E
-6

 
l'1

9E
-7

 
3·

57
 

0·
40

 
2·

 1
7E

-4
 

3'
36

 
2'

6E
-4

 
2'

44
E

-5
 

3'
45

 
2'

9E
-5

 
2'

21
E

-7
 

3·
56

 
2'

6E
-7

 
l'5

9E
-9

 
3'

62
 

0'
35

 
3'

04
E

-5
 

3-
44

 
3'

2E
-5

 
1·

71
E

-6
 

3'
52

 
l'

8E
-6

 
3-

35
E

-9
 

3'
61

 
3·

5E
-9

 
4'

6E
-1

2 
3'

67
 

0'
30

 
2'

03
E

-6
 

3·
52

 
l'

8E
-6

 
4'

3l
E

-8
 

3·
58

 
3-

9E
-8

 
9·

5E
-1

2 
3'

66
 

8·
5E

-1
2 

1'
2E

-1
5 

3,
71

 

0·
25

 
4'

06
E

-8
 

3'
58

 
3'

O
E

-8
 

2'
O

E
-1

O
 

3'
64

 
l'5

E
-1

O
 

1'
7E

-1
5 

3'
71

 
l'3

E
-1

5 
6'

4E
-2

1 
3-

74
 

a 
T

r 
=

 
T

fT
c;

 b
 d

r 
=

 
d 

fd
: 

=
 

1
/3

(R
T c

/P
c)

' 
d

; 
c 
p~

 =
 

pO
 fp

c;
 

d 
8·

58
E

-2
 =

 
8

'5
8

. 
1

0
-2

• 

p~
 

0'
33

1 
0·

16
9 

7-
8E

-2
 

3·
lE

-2
 

l'O
E

-2
 

2-
7E

-3
 

5·
1E

-4
 

6'
4E

-5
 

4·
7E

-6
 

l'
6E

-7
 

1'
9E

-9
 

4'
8E

-1
2 

1·
IE

-1
5 

4-
8E

-2
1 

t:I
 >
 

Z
 a:: ;. 0 Q
. 0- .. (1
 

!!!.
. 

(
)
 

c: e o· ::I
 So
 ~ 0 c: t .c
 

c: is:
 

~
 E: [ '" jo

o
I 

fM
 



14 Novak, Ruzi(!ka, Malijevsky, Matou8, Linek: 

azeotropic point and was within 2 to 3 for increment L\Xl = 0·05. It should be noted, 
however, that the coordinates of the azeotropic point cannot be determined using 
the algorithm here suggested. As the tracing of the phase envelope requires preliminary 
specification of the composition of one of the phases, the azeotropic point is usually 
crossed. Applying the modification as described above for the critical point location, 
the azeotropic point may also be found by extrapolation. 

The procedure developed is most efficient in successive calculations, e.g. where 
a tracing of the phase envelope is desired. The effectiveness is mainly due to the fact 
that the results of the calculation of the preceding equilibrium point are completely 
utilized in obtaining the estimate of the next equilibrium point. The tracing technique 
consists in the linear approximation of the equilibrium curve. It is, therefore, especial­
ly convenient for multicomponent mixtures where it leads to a set of linear equations. 

The problems arising from poor initial estimates which may result in trivial solu­
tions are avoided. At conditions where an initial estimate obtained, for example, 
by Raoult's and Amagat's laws does not guarantee a convergency even with step­
-limiting, the calculation may be started at more favourable conditions. Once a solu­
tion of an equilibrium point is found it is possible to proceed along the equilibrium 
curve rather quickly. 

The algorithm is developed for use with a single equation of state. The partial 
derivatives needed in the application of the Newton-Raphson method may be 
evaluated analytically employing dimensionless quantities. At the same time dimen­
sionless quantities can also be used to calculate all thermodynamic properties. 

2·0 

P 
MPo 

FIG. 4 

Phase envelopes in the system ethane(l) + 
+ carbon dioxide(2). Up to 3 iterations re­
quired to construct the equilibrium points 
including a close proximity of the azeotropic 
point. Interaction parameters ka = 0·19. 
kb = 0 taken from Eveleine and Moore17 
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APPENDIX A 

Determination of Estimate of Equilibrium Quantities 

The estimate of equilibrium quantities, i.e. temperature or pressure, liquid and vapour phase 
densities and composition of liquid or vapour phase, is determined assuming the ideal solution 
(Raoult's law) and the ideal behaviour of the vapour phase (Dalton's law) 

PYi = XiP?, i = 1, 2, . '" N . (AI) 

The pure component vapour pressure p? is calculated from the Lee and Kesler18 generalized 
corresponding states equation 

In (P?!PCi) = A + BjTri + C In (Tri ) + D Tr~ + 
+ Q)i(E + Fjr.i + GIn (Tri) + H Trn, (A2) 

where l~i is the reduced temperature, T /Tci' and Wi is the acentric factor. The values of the 
generalized constants are: A = 5'92714, B = - 6'09648, C = -1'28862, D = 0'169347, E = 

= 15'2518, F = -15'6875, G = -13'4721, H = 0·43577. 

The vapour phase density is determined from the ideal gas equation of state 

dV = pj(RT). 

The liquid phase density is estimated by generalized Amagat's law19 

N 

IjdL = V':; = I XiVmi , 
i= 1 

where VOli is the molar volume of component i calculated by the Rackett equation20 

v.. = v.. (!-Tr )2/7 
ml C.ZCl , 

(A3) 

(A4) 

(A5) 

where Vci is the critical molar volume and zci the critical compressibility factor of component i. 
The molar volumes V mi of all components are evaluated at the same pseudoreduced temperature 
of mixture Tr = T /Tpc with pseudocritical temperature calculated by the Kay rule 

N 

Tpc = I xiTci ' 
i=1 

(A6) 

In some cases the density of the liquid phase determined by Eq. (A4) and used in an equation 
of state may lead to serious errors in calculated pressure. Therefore, if it is desirable to improve 
the estimate of the liquid phase density, this can be done by solving the equation of state for 
a given pressure to calculate the liquid density. 

The following procedures are adopted for particular cases discussed in the paper: 

I) Calculation of bubble point pressure (Jpecijied l'ariablcs T, x) 

The system pressure is estimated using Raoult's law 

N 

P = L XiP? . 
I = I 

Collection Czechoslovak Chern. Commun. [Vol. 501 [1985) 

(A7) 



16 Novak., Ruzi(!ka, Malijevsky, Matous, Linek : 

The vapour phase composition is calculated from Eq. (AI). 

2) Calculation of dew point pressure (Jpecijied I,ariables T, y) 

The system pressure is estimated by 

N 

P = O~>dp?tl . 
i=1 

The liquid phase composition is obtained from Eq. (AI). 

3) C alculatioll of bubble point temperature (Jpecijied I'ariables p, x) 

(A8) 

The temperature is determined by solving Eq. (A7). Applying the Newton-Raphson method the 
(j + 1)-th approximation of temperature is given by 

In P = In Pj + [0 In p/a(1/T)]T=Tj (l/1J+l 
= Inpj - (1J2/Pj)(op/oTh=Tj(1/1J+l (A9) 

where Pj is the pressure calculated by Eq. (A7) using the pure component vapour pressures 
determined at the temperature Tj . Employing the vapour pressure Eq. (A2) the derivative (cp/cT) 
is given by 

N 

(op/oTh=Tj = L x;p?(o In p?/oTh=TJ = 
i=1 

LN XiP? [ B C 5 (F G 5)J = - - - + - + 6D T. + ()). - - + - + 6H T· • 2 rI I 2 rJ • 

1=1 Tci Tri T,.; Tr; Tri 
(AW) 

For T j + 1 then follows 

1 1 -- = - + ---.-------
1J+I 1J ~ D[ ( ) ( ) ( ) 6] ~ XiPi - B + ())iF Tci + C + ())iG T + 6 D + ())iH T. Tri T=T j 

j;::1 

(All) 

The first estimate of temperature needed for solving Eq. (All) is determined from the equation 

In P = In Ppc + 6'9(1 - Tpc/T) , (A 12) 

where Ppc and Tpc are the pseudocritical pressure and temperature calculated by the Kay rule 
(Eq. (A6» using the liquid phase mole fraction x. 

4) Calculation of dew point temperature (Jpecijied variables p, y) 

In this case the temperature is estimated by solving the Eq. (AB). Derivative (op/oT) is given 
by 

N N 

(op/oTh=Tj = [( L Yi/P?)-2 . L Ydp?(o In p?/OT)]T=Tj = 
i= 1 i= 1 

pI i -fi- [- B2 + ~- + 6D Tr~ + ())i (- !2 + TG + 6H Tr~)J . (A 13) 
i = 1 Pi Tci Tri Tri Tri ri 
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For T j + 1 then follows 

1 1 -=-+ 
1j+l 1j 

+ 
In (Pj/p) (A 14) 

N 

Pj I y;/p?[ -(B + w;F) Tei + (C + WiG) T + 6(D + w;H) T, TrnT=Tj 
i= 1 

The next steps are analogous to those described above for the bubble point temperature. Pseudo­
critical temperature and pressure are calculated using the vapour phase mole fraction y, 

APPENDIX B 

Dimensionless Quantities 

Basic relations 

Equation of state: 

z = pV/(nRT) = z(T, d, x) 

. a) Defined dimensionless quantities 

Qd = Z + d(cz/iJdh.x 

QT = z + T(iJz/iJT)d.x 

Q = f: (z - 1) d In d 

Qu T(iJQF/iJTkx 

Qc T2(iJ2QF/iJT2)d,x 
N-l 

Z; Z + (iJZ/iJX;)T,d'''<*1 - I xliJz/iJxjh,d'X"'*J 
j = 1 

N-l 

QF + (iJQF/UX;)T,d,x ..... - I XliJQF/iJxjh,d,Xki<J 
j=l 

Qu,; T(iJQF,;jiJT)d,x 

Qc,; T 2(a2QF,;/iJT2)d,x 

QF,;,j = (iJQF,i/iJxjh,d,Xk*l 

i = 1,2, .. " N; j = 1,2, .. " N - 1 
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b) Dependence of equation of state parameters on composition 

N N 

B = L L X;XjB;j' Bij = BJ; 
i= I j= 1 

N-I 

E; = B + (aB/aX;)XkH - L XJ(aB/aXj)Xk~J = 
j=1 

N 

= - B + 2 L xjB;j' i = 1, 2, ... , N 
j=1 

(aB/aXj)Xk~J = Ej - EN' j = 1,2, ... , N - 1 

(aE;/aXj)Xk*J = EN - Ej + 2(B;j - B;N) , 

i = 1,2, ... , N; j = 1,2, ... , N - 1 

c) Calculation of thermodynamic functions using dimensionless quantities 

v = VO - RTQu 

H = H O - RT(Qu + 1 - z) 

S = SO - R[In (pjPst) - In z + QF + Qu] 

A = AO + RT[In (p/Pst) - In z + QF] 

G = GO + RT[In (p/ Pst) - In z + QF + z - 1] 

In v = In (J / p) = -In z + QF + z - 1 

Cy = Ce - R(2Qu + Qc) 
Cp = C~ - R(1 + 2Qu + Qc - Qi/Qd) 

J.LJT = (QT - Qd)/(CpQdd) 

W;d = (RT/M)(Cp/Cy ) Qd 

TIXp = (a In vja In T)p.x = QT/Qd 

PPT = -(a In via In ph.x = ZjQd 

Partial molar quantities (i = 1,2, ... , N) 

~ = [1 + (Z; - z)/Qd]jd 

Vi = V? - RT[Qu,; - (QT - z) (Z; - Z)/Qd] 

H; = H? + RT[ -Qu,; + z - 1 + (Zj - z) QT/Qd] 

S; = S? - R[In (x;RTd/Pst) - Qu,; + QF,; + (z - Z;) QT/Qd] 

A; = A? + RT[In (xiRTdjPst) + QF,i - z(z; - Z)jQd] 

OJ = G? + RT[In (xjRTd/Pst) + QF,i + z - 1] 
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DAN Method for Calculation of Vapour-Liquid Equilibria 19 

In Vi = In U;/(PXi)] = ':""In z + QF,i + z - 1 

Cv,i = C~.i + R[ -2QU,i - QC,i + T(OQTjoT)d,x (Zi - Z)/Qd] 

d) Calculation of pressure, fugacity and their derivatives with respect to temperature, density 
and composition 

P = zRTd 

(opjoTkx = RdQT 

(opjadh,x = RTQd 

(opjOXjh.d,Xk"'J = RTd(zj - ZN) 

1= RTd exp (QF + z - 1) (pure component) 

(oljoT)d,X = 1(1 - z + QT + Qu)jT (pure component) 

(oljodh,x = IQd/d (pure component) 

Ii = xiRTd exp (QF,i + z - 1) 

(a/;jodh,x = li(Zi - Z + Qd)jd 

(OlijoT)d,X = li(1 - z + QT + Qu,i)jT 

(OlljOXjh,d,Xk",j = I;[zi - ZN + (t5;J - t5 IN)jX; + QF,I,J] 

i = 1, 2, ... , N; j = 1, 2, ... , N - 1 

(t5 ij = 1 for i = j, t5ij = 0 for i #= j) 

Calculation of Dimensionless Quantities using the Soave-Redlich-Kwong equation of state 

z = Ij(1 - bd) - adj[RT(l + bd)] 
N N 

b = L L x;xjbij' bli = 0'08644RTe;/ Pei 
i=1 j=1 

bij = (1 - kb;j) (b ii + bJJ)j2 kbiJ = kbji 

a = A - BT1/2 + CT 
N N N N 

A = L L xixJAij , 
i=1 j=1 

B = L L x;xJB;j 

C 
N N 

= L L XiXjC;j 
;= 1 j= 1 

j=1 j=1 

aii = 0'42747R2TeVPe;, mj = 0·480 + 1'57400j - 0'17600~ 

s;J = (1 - kajj) (ailajJ)I/2, kaij = kaji 

Aij = sij(1 + m j ) (1 + mj) 

Bij = sij[(1 + mj)mjTejl/2 + (1 + mj)m;Tei 1/ 2 ] 
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Cij = SijmimttciTCjtl/2 

ai = Ai - BiTl/2 + CiT 

aij = Aij - BijTl/2 + CuT 

Qd = 1/(1 - bd)2 - ad(2 + bd)/[RT(1 + bd)2] 

QT = 1/(1 - bd) - d[CT - Q·5BTl/2]/[RT(1 + bd)] 

QF = -In (1 - bd) - [aj(RTb)] In (1 + bd) 

Qu = [A - Q·5BTI/2)j(RTb)] In (1 + bd) 

Qc = - [(2A - Q'75BT1 /2)j(RTb)] In (1 + bd) 

Zi = [1 + d(Oi - 2b)]j(1 - bd)2 - aid/[RT(1 + bd)] + 
+ d2a(oj - b)j[RT(1 + bd)2] 

QF,i = -In (1 - bd) + (OJ - b) dj(1 - bd) -

- [iijj(RTb)] In (1 + bd) + [a(oj - b)j(RTb2)] . 

. [In(1 + bd) - bdj(1 + bd)] 

QU,i = (bRTtl {(Aj - Q'5B j T1 /2) In (1 + bd) + 

+ (oijb - 1) (Q'5BT1 /2 - A) [In (1 + bd) - bdj(l + bd)]} 

QF,i,j = [dj(1 - bd)] {2(bij - biN) -

LIST OF SYMBOLS 

- (OJ - ON) [1 - (5 i - b) dj(1 - bd)]} + 
+ (RTbltl {(oJ - liN) (aib - 2ali;) + blii(aj - aN) + 
+ 2b[a(bij - biN) - b(ajj - aiN)]} In (1 + bd) + 
+ d{(Oj - ON) (2aOi - aib) -

- b(oj - b)(aj - aN) - 2ab(bij - biN) + 
+ a(bi - b) bd(bj - bN)/(1 + bd)}j[RTb2(1 + bd)] 

A Helmholtz energy 
Cp molar heat capacity at constant pressure 
Cv molar heat capacity at constant volume 
d molar density, d = nj V 

determinant D 

f 
G 
H 

fugacity 
molar Gibbs energy 
molar enthalpy 

M molar mass 
number of moles n 
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N number of components 
p pressure 
pO pure component vapour pressure 
Pst standard pressure 
R gas constant 
S molar entropy 
S quantity defined by Eq. (4) or (12) 
T temperature 
U molar internal energy 
V volume 
V m molar volume 
wad adiabatic velocity of sound 
x vector of liquid phase mole fractions 
y vector of vapour phase mole fractions 
z compressibility factor 
O(p thermal expansion 

PT isothermal compressibility 
dij Kronecker delta 
EO convergence tolerance 
E1 maximum step permitted in one iteration 
E2 maximum allowed step along the equilibrium curve 
PJT Joule-Thompson coefficient 
v fugacity coefficient 
w acentric factor 

Subscripts 

c critical property 
i-th component in the N component system 

pc pseudocritical property 
r reduced property 

Superscripts 

L liquid phase 

21 

molar thermodynamic quantity in the ideal gas state at temperature T and standard pres­
sure Pst 

V vapour phase 
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Complete check of thermodynamic stability in both phases in all iteration steps 
would result in mainly multicomponent systems in a considerable increase of com­
puter time requirements. We have observed that in many cases it is sufficient to per­
form the complete check, which entails the calculation of determinants D: and D~, 
only at the end of the calculation when the convergence was achieved. 

To illustrate the application of the DAN method several examples are here pre­
sented. They include the construction of the phase envelope in binary two phase 
systems consisting of the liquid and the vapour phases. Multicomponent systems 
and systems which split into two liquid phases will be dealt with in a separate paper. 

The discussion is " devoted to the following cases: 1) retrograde region; 2) vicinity 
of the mixture critical point; 3) azeotropic mixtures. In all cases the Soave-Redlich­
_Kwong16 equation of state was adopted. A value of the convergence tolerance 
eo = 1.10-12 was employed and computations were performed in double precision. 

Two isotherms in the system methane-propane which include the retrograde region 
are shown in Fig. 2. In isothermal calculations with the step along the equilibrium 
curve IL1X11 = 0·05 the number of iterations was 4 in the whole concentration region 
except in the vicinity of the critical point. Changing the temperature from 275 K 
to 300 K required 5 iterations. 

In the system methane-propane and in similar systems with one of the components 
being at a supercritical temperature, some difficulties may arise in obtaining the 
first estimate of e6luilibrium quantities. Two possibilities are outlined which guarantee 
a qualified initial guess and thus lead to convergence of the iteration procedure. 
First, it is possible to start from a temperature below the critical temperature of all 
components in the mixture. Once the solution is found the temperature can be raised 

FIG. 2 

Phase envelopes in the system methane(l) + 
+ propane(2). Up to 4 iterations required 
to construct the equilibrium points 
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